A/B Testing Statistics
What are A/B Testing Statistics
A/B testing statistics refers to the statistical model used in the conduction of an A/B test (controlled experiment) which in the App stores is the comparison in performance between two variations of an App store page. An A/B test will be used to approve or disprove a hypothesis by testing just a sample of the entire population in the live store, before using the observations collected to predict with a reasonable level of accuracy how the entire population in the live App stores will behave.Every statistical model has a number of pre-requisites (test parameters) that need to be met in order to conduct a reliable test that shows which iteration performs better.
There are three A/B testing statistical methods that can be used in different ways. The first is the ‘frequentist’ approach which ignores any previous findings or knowledge from similar tests, using only data from the current experiment.
Why A/B Testing Statistics are Important
Statistics is vital to the process of planning, running and evaluating A/B tests.Simply put: failing to use the right statistical model when A/B testing would be a waste of time and money. The effective implementation of A/B testing statistics should translate to an increase in installs for the tested audience once the better performing page is applied to the entire population in the live App stores.